ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В прямоугольном параллелепипеде АВСDA'B'C'D'  АВ = ВС = а,  AA' = b.  Его ортогонально спроектировали на некоторую плоскость, содержащую ребро CD. Найдите наибольшее значение площади проекции.

Вниз   Решение


Даны два треугольника. Сумма двух углов первого треугольника равна некоторому углу второго. Сумма другой пары углов первого треугольника также равна некоторому углу второго. Верно ли, что первый треугольник – равнобедренный?

ВверхВниз   Решение


Расстояние между любыми двумя боковыми рёбрами наклонной треугольной призмы равно a . Боковое ребро равно l и наклонено к плоскости основания под углом 60o . Найдите площадь полной поверхности призмы.

ВверхВниз   Решение


Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 64]      



Задача 87416

Темы:   [ Боковая поверхность призмы ]
[ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 10,11

Расстояние между любыми двумя боковыми рёбрами наклонной треугольной призмы равно a . Боковое ребро равно l и наклонено к плоскости основания под углом 60o . Найдите площадь полной поверхности призмы.
Прислать комментарий     Решение


Задача 110422

Темы:   [ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 10,11

Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB=4 , AD = AA1 = 14 . Точка M – середина ребра CC1 . Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A1 , D и M .
Прислать комментарий     Решение


Задача 110424

Темы:   [ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Основание правильной четырёхугольной пирамиды – квадрат со стороной 8. Высота пирамиды равна 9. Через сторону основания проведена плоскость, образующая с плоскостью основания угол, равный arctg . Найдите площадь сечения пирамиды этой плоскостью.
Прислать комментарий     Решение


Задача 77933

Темы:   [ Неравенства с площадями ]
[ Площадь и ортогональная проекция ]
Сложность: 3+
Классы: 10,11

Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость.
Прислать комментарий     Решение


Задача 65174

Темы:   [ Прямоугольные параллелепипеды ]
[ Площадь и ортогональная проекция ]
Сложность: 4-
Классы: 10,11

В прямоугольном параллелепипеде АВСDA'B'C'D'  АВ = ВС = а,  AA' = b.  Его ортогонально спроектировали на некоторую плоскость, содержащую ребро CD. Найдите наибольшее значение площади проекции.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .