ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что многочлен P(x) делится на свою производную тогда и только тогда, когда P(x) имеет вид  P(x) = an(x – x0)n.

Вниз   Решение


Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.

ВверхВниз   Решение


Стороны треугольника равны 3 и 6, а угол между ними равен 60o . Найдите биссектрису тругольника, проведённую из вершины этого угла.

ВверхВниз   Решение


В треугольнике ABC биссектриса AD делит сторону BC в отношении  BD : DC = 2 : 1.  В каком отношении медиана CE делит эту биссектрису?

ВверхВниз   Решение


Автор: Ботин Д.А.

Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.

ВверхВниз   Решение


Автор: Гурари В.

Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек A и B существует такая точка С этого множества, что треугольник ABC равносторонний. Сколько точек может содержать такое множество?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 68]      



Задача 58060

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 6
Классы: 8,9

На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.
Прислать комментарий     Решение


Задача 58061

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 6
Классы: 8,9

На плоскости дано n точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2n - 3.
Прислать комментарий     Решение


Задача 73637

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Правильный (равносторонний) треугольник ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Метод ГМТ ]
[ Системы точек ]
Сложность: 6
Классы: 8,9,10,11

Автор: Гурари В.

Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек A и B существует такая точка С этого множества, что треугольник ABC равносторонний. Сколько точек может содержать такое множество?
Прислать комментарий     Решение


Задача 111832

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Покрытия ]
[ Тетраэдр (прочее) ]
[ Шар и его части ]
Сложность: 6+
Классы: 10,11

Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары. Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?
Прислать комментарий     Решение


Задача 107699

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 2+
Классы: 6,7,8

Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 68]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .