|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что многочлен P(x) делится на свою производную тогда и только тогда, когда P(x) имеет вид P(x) = an(x – x0)n. Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что Стороны треугольника равны 3 и 6, а угол между ними равен 60o . Найдите биссектрису тругольника, проведённую из вершины этого угла. В треугольнике ABC биссектриса AD делит сторону BC в отношении BD : DC = 2 : 1. В каком отношении медиана CE делит эту биссектрису? Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек A |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 68]
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 68] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|