ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Известно, что множество M точек на прямой может быть покрыто тремя отрезками длины 1.
Каким наименьшим числом отрезков длины 1 можно заведомо покрыть множество середин отрезков с концами в точках множества M?

Вниз   Решение


Четырёхугольник $ABCD$ вписан в окружность, $DC = m$, $DA = n$. На стороне $BA$ взяты точки $A_1$ и $K$, а на стороне $BC$ – точки $C_1$ и $M$. Известно, что $BA_1 = a$, $BC_1 = c$, $BK = BM$ и что отрезки $A_1M$ и $C_1K$ пересекаются на диагонали $BD$. Найдите $BK$ и $BM$.

ВверхВниз   Решение


CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .

ВверхВниз   Решение


Докажите, что найдутся двадцать москвичей, имеющих одинаковое число волос на голове.
(Известно, что у человека на голове не более 400000 волос, а в Москве не менее 8 миллионов жителей.)

ВверхВниз   Решение


Можно ли начертить, не отрывая карандаша от бумаги (одним росчерком)
  а) квадрат с диагоналями?
  б) шестиугольник со всеми диагоналями?

ВверхВниз   Решение


Имеется три кучки по 40 камней. Петя и Вася ходят по очереди, начинает Петя. За ход надо объединить две кучки, после чего разделить эти камни на четыре кучки. Кто не может сделать ход – проиграл. Кто из играющих (Петя или Вася) может выиграть, как бы ни играл соперник?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 30438

Тема:   [ Игры-шутки ]
Сложность: 3
Классы: 7,8,9

На доске написаны числа 25 и 36. За ход разрешается дописать еще одно натуральное число - разность любых двух имеющихся на доске чисел, если она еще не встречалась. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30439

Тема:   [ Игры-шутки ]
Сложность: 3
Классы: 7,8,9

Дана клетчатая доска размерами

а) 9 × 10;     б) 10 × 12;     в) 9 × 11.

За ход разрешается вычеркнуть любую горизонталь или любую вертикаль, если в ней к моменту хода есть хотя бы одна невычеркнутая клетка. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 35673

Темы:   [ Игры-шутки ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9,10

Двое играют в двойные шахматы: все фигуры ходят как обычно, но каждый делает по два шахматных хода подряд. Докажите, что первый может как минимум сделать ничью.
Прислать комментарий     Решение


Задача 66516

Тема:   [ Игры-шутки ]
Сложность: 3+
Классы: 6,7,8

Имеется три кучки по 40 камней. Петя и Вася ходят по очереди, начинает Петя. За ход надо объединить две кучки, после чего разделить эти камни на четыре кучки. Кто не может сделать ход – проиграл. Кто из играющих (Петя или Вася) может выиграть, как бы ни играл соперник?
Прислать комментарий     Решение


Задача 30433

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Игры-шутки ]
Сложность: 3-
Классы: 6,7,8

Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .