ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Внутри треугольника ABC взята точка X. Прямые AX, BX и CX пересекают стороны треугольника в точках A1, B1 и C1. Докажите, что если описанные окружности треугольников AB1C1, A1BC1 и A1B1C пересекаются в точке X, то X — точка пересечения высот треугольника ABC.

Вниз   Решение


Докажите, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то его объём не меньше ⅓ h1h2h3.

ВверхВниз   Решение


Луч света, пущенный из точки M, зеркально отразившись от прямой AB в точке C, попал в точку N.
Докажите, что биссектриса угла MCN перпендикулярна прямой AB. (Угол падения равен углу отражения.)

ВверхВниз   Решение


Решите уравнение  

ВверхВниз   Решение


Две окружности пересекаются прямой l, как указано на рисунке. Докажите, что угол  ∠ABC = ∠DEM.

ВверхВниз   Решение


Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 132]      



Задача 65279

Темы:   [ Дискретное распределение ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 8,9,10,11

Вероятность того, что купленная лампочка будет работать, равна 0,95.
Сколько нужно купить лампочек, чтобы с вероятностью 0,99 среди них было не менее пяти работающих?

Прислать комментарий     Решение

Задача 65280

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 8,9,10,11

У охотника есть две собаки. Однажды, заблудившись в лесу, он вышел на развилку. Охотник знает, что каждая из собак с вероятностью p выберет дорогу домой. Он решил выпустить собак по очереди. Если обе выберут одну и ту же дорогу, он пойдёт за ними; если же они разделятся, охотник выберет дорогу, кинув монетку. Увеличит ли таким способом охотник свои шансы выбрать дорогу домой, по сравнению с тем, как если бы у него была одна собака?

Прислать комментарий     Решение

Задача 65283

Темы:   [ Дискретное распределение ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

В ящике 2009 носков – синих и красных. Может ли синих носков быть столько, чтобы вероятность вытащить наудачу два носка одного цвета была равна 0,5?

Прислать комментарий     Решение

Задача 65285

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

Прислать комментарий     Решение

Задача 65287

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9,10,11

По условиям шахматного матча победителем объявляется тот, кто опередил соперника на две победы. Ничьи в счет не идут. Вероятности выигрыша у соперников одинаковы. Число результативных партий в таком матче – величина случайная. Найдите её математическое ожидание.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .