ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.

Вниз   Решение


Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?

ВверхВниз   Решение


Цифры 1, 2, ..., 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

ВверхВниз   Решение


Каким линейным рекуррентным соотношениям удовлетворяют последовательности

a) an = n2;        б) an = n3?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 234]      



Задача 78781

Тема:   [ Рекуррентные соотношения ]
Сложность: 3+
Классы: 11

Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001.
Прислать комментарий     Решение


Задача 60581

 [Числа Фибоначчи и треугольник Паскаля]
Темы:   [ Числа Фибоначчи ]
[ Треугольник Паскаля и бином Ньютона ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:  
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)

Прислать комментарий     Решение

Задача 61432

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Докажите тождество

$\displaystyle \sum\limits_{k=0}^{n}$$\displaystyle {\dfrac{1}{F_{2^k}}}$ = 3 - $\displaystyle {\dfrac{F_{2^n-1}}{F_{2^n}}}$        (n $\displaystyle \geqslant$ 1).



Прислать комментарий     Решение

Задача 61302

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4-
Классы: 10,11

Старый калькулятор I. а) Предположим, что мы хотим найти $ \sqrt[3]{x}$ (x > 0) на калькуляторе, который кроме четырех обычных арифметических действий умеет находить $ \sqrt{x}$. Рассмотрим следующий алгоритм. Строится последовательность чисел {yn}, в которой y0 — произвольное положительное число, например, y0 = $ \sqrt{\sqrt{x}}$, а остальные элементы определяются соотношением

yn + 1 = $\displaystyle \sqrt{\sqrt{x\,y_n}}$        (n $\displaystyle \geqslant$ 0).

Докажите, что

$\displaystyle \lim\limits_{n\to\infty}^{}$yn = $\displaystyle \sqrt[3]{x}$.


б) Постройте аналогичный алгоритм для вычисления корня пятой степени.

Прислать комментарий     Решение

Задача 61485

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Каким линейным рекуррентным соотношениям удовлетворяют последовательности

a) an = n2;        б) an = n3?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 234]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .