|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M. На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных. Докажите, что геометрическая прогрессия {an} = bx0n удовлетворяет соотношению (11.2 ) тогда и только тогда, когда x0 -- корень характеристического уравнения (11.3 ) последовательности {an}. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
называется линейной рекуррентной (возвратной) последовательностью второго порядка. Уравнение
называется характеристическим уравнением последовательности (a n). Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно.
Последовательность an задана условием: an+1 = an – an–1. Найдите a100, если a1 = 3, a2 = 7.
an = c1x1n + c2x2n (n = 0, 1, 2,...).
an = (c1 + c2n)x0n (n = 0, 1, 2,...).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|