|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В 10-этажном доме на первом этаже живет 1 человек, на втором — 2, на третьем — 3, на четвертом — 4, ... на десятом — 10. На каком этаже лифт останавливается чаще всего? Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.) Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся. Докажите равенство |
Страница: 1 2 3 4 >> [Всего задач: 17]
Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения
Докажите, что если x + iy = (s + it)n, то x2 + y2 = (s2 + t2)n.
Докажите, что если |z| = 1 (z ≠ –1), то для некоторого действительного t справедливо равенство z = (1 + it)(1 – it)–1.
Докажите две формулы Муавра. Первая из них дает правило возведения в степень комплексного числа, представленного в тригонометрической форме
Докажите равенство
Страница: 1 2 3 4 >> [Всего задач: 17] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|