|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан выпуклый четырёхугольник ABCD , и проведены биссектрисы lA , lB , lC , lD внешних углов этого четырёхугольника. Прямые lA и lB пересекаются в точке K , прямые lB и lC – в точке L , прямые lC и lD – в точке M , прямые lD и lA – в точке N . Докажите, что если окружности, описанные около треугольников ABK и CDM , касаются внешним образом, то и окружности, описанные около треугольников BCL и DAN , касаются внешним образом. Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других? Докажите, что если |z| = 1 (z ≠ –1), то для некоторого действительного t справедливо равенство z = (1 + it)(1 – it)–1. |
Страница: 1 2 3 4 >> [Всего задач: 17]
Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения
Докажите, что если x + iy = (s + it)n, то x2 + y2 = (s2 + t2)n.
Докажите, что если |z| = 1 (z ≠ –1), то для некоторого действительного t справедливо равенство z = (1 + it)(1 – it)–1.
Докажите две формулы Муавра. Первая из них дает правило возведения в степень комплексного числа, представленного в тригонометрической форме
Докажите равенство
Страница: 1 2 3 4 >> [Всего задач: 17] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|