|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В классе $N$ школьников, среди них образовалось несколько компаний. Общительностью школьника назовём количество людей в наибольшей компании, куда он входит (если ни в одну не входит, то общительность равна $1$). Оказалось, что у всех девочек в классе общительность разная. Каково наибольшее возможное количество девочек в классе? Медианой пятиугольника ABCDE назовём отрезок, соединяющий вершину с серединой противолежащей стороны (A – с серединой CD, B – с серединой DE и т.д.). Докажите, что если четыре медианы выпуклого пятиугольника перпендикулярны сторонам, к которым они проведены, то таким же свойством обладает и пятая медиана. По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29. Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019? Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если n = 4, то таких последовательностей пять: 1111, 112, 121, 211, 22. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 71]
Fn + 1Fn - 1 - Fn2 = (- 1)n (n > 0).
Будет ли тождество Кассини справедливо для всех целых n?
Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если n = 4, то таких последовательностей пять: 1111, 112, 121, 211, 22.
а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 71] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|