ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В классе $N$ школьников, среди них образовалось несколько компаний. Общительностью школьника назовём количество людей в наибольшей компании, куда он входит (если ни в одну не входит, то общительность равна $1$). Оказалось, что у всех девочек в классе общительность разная. Каково наибольшее возможное количество девочек в классе?

Вниз   Решение


Медианой пятиугольника ABCDE назовём отрезок, соединяющий вершину с серединой противолежащей стороны (A – с серединой CD, B – с серединой DE и т.д.). Докажите, что если четыре медианы выпуклого пятиугольника перпендикулярны сторонам, к которым они проведены, то таким же свойством обладает и пятая медиана.

ВверхВниз   Решение


По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

ВверхВниз   Решение


Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?

ВверхВниз   Решение


Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если  n = 4,  то таких последовательностей пять: 1111,  112,  121,  211,  22.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 71]      



Задача 35468

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9

Найдите количество слов длины 10, состоящих только из букв "а" и "б" и не содержащих в записи двух букв "б" подряд.
Прислать комментарий     Решение


Задача 60560

 [Задача Леонардо Пизанского]
Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9

Некто приобрел пару кроликов и поместил их в огороженный со всех сторон загон. Сколько кроликов будет через год, если считать, что каждый месяц пара дает в качестве приплода новую пару кроликов, которые со второго месяца жизни также начинают приносить приплод?

Прислать комментарий     Решение

Задача 60564

 [Тождество Кассини]
Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Тождество Кассини. Докажите равенство

Fn + 1Fn - 1 - Fn2 = (- 1)n        (n > 0).


Будет ли тождество Кассини справедливо для всех целых n?

Прислать комментарий     Решение

Задача 60583

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если  n = 4,  то таких последовательностей пять: 1111,  112,  121,  211,  22.

Прислать комментарий     Решение

Задача 104123

Темы:   [ Числа Фибоначчи ]
[ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 3
Классы: 7,8,9

а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
б) При спуске с той же лестницы Леша перепрыгивает через некоторые ступеньки (может даже через все 10). Сколькими способами он может спуститься по этой лестнице?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .