ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.  Проведены хорды AC и BD, пересекающиеся в точке M.
Найдите угол AMB.

Вниз   Решение


Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

ВверхВниз   Решение


Даны два круга — один внутри другого. Через их центры проведен в большем круге диаметр, который окружностью меньшего круга делится на три части, равные 5, 8 и 1. Найдите расстояние между центрами кругов.

ВверхВниз   Решение


Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что  cos∠A + cos∠B = 1.

ВверхВниз   Решение


На плоскости дано n$ \ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


На плоскости расположено несколько точек, все попарные расстояния между которыми различны. Каждую из этих точек соединяют с ближайшей. Может ли при этом получиться замкнутая ломаная?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 68]      



Задача 35484

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 7,8,9

На столе лежат монеты без наложений. Докажите, что одну из них можно выдвинуть, не задевая остальных.

Прислать комментарий     Решение

Задача 58053

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9

На плоскости дано n$ \ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.
Прислать комментарий     Решение


Задача 58054

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9

На плоскости расположено несколько точек, все попарные расстояния между которыми различны. Каждую из этих точек соединяют с ближайшей. Может ли при этом получиться замкнутая ломаная?
Прислать комментарий     Решение


Задача 97867

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 7,8,9

Квадрат разбит на пять прямоугольников так, что четыре угла квадрата являются углами четырёх прямоугольников, площади которых равны между собой, а пятый прямоугольник не имеет общих точек со сторонами квадрата. Докажите, что этот пятый прямоугольник есть квадрат.

Прислать комментарий     Решение

Задача 34936

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Четность и нечетность ]
[ Системы точек ]
Сложность: 3+
Классы: 7,8,9,10

На каждой из 15 планет, расстояния между которыми попарно различны, находится по астроному, который наблюдает ближайшую к нему планету. Докажите, что некоторую планету никто не наблюдает.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 68]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .