|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M. Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
Даны два круга — один внутри другого. Через их центры проведен в большем круге диаметр, который окружностью меньшего круга делится на три части, равные 5, 8 и 1. Найдите расстояние между центрами кругов.
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2. На плоскости дано n |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 68]
На столе лежат монеты без наложений. Докажите, что одну из них можно выдвинуть, не задевая остальных.
На каждой из 15 планет, расстояния между которыми попарно различны, находится по астроному, который наблюдает ближайшую к нему планету. Докажите, что некоторую планету никто не наблюдает.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 68] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|