ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

Вниз   Решение


AB и AC — касательные к одной окружности, $ \angle$BAC = 60o, длина ломаной BAC равна 1. Найдите расстояние между точками касания B и C.

ВверхВниз   Решение


Пусть O — центр описанной окружности треугольника ABC, а точка H обладает тем свойством, что $ \overrightarrow{OH}$ = $ \overrightarrow{OA}$ + $ \overrightarrow{OB}$ + $ \overrightarrow{OC}$. Докажите, что H — точка пересечения высот треугольника ABC.

ВверхВниз   Решение


Через конец хорды, делящей окружность в отношении 3:5, проведена касательная. Найдите острый угол между хордой и касательной.

ВверхВниз   Решение


На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 381]      



Задача 57974

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Докажите, что при гомотетии окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57975

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.
Прислать комментарий     Решение


Задача 57976

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.
Прислать комментарий     Решение


Задача 57977

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.
Прислать комментарий     Решение


Задача 57978

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .