|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°. Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем По неподвижной окружности, касаясь ее изнутри, катится без скольжения окружность вдвое меньшего радиуса. Какую траекторию описывает фиксированная точка K подвижной окружности? Докажите, что при параллельном переносе окружность переходит в окружность. Разбирается дело Брауна, Джонса и Смита. Один из них совершил преступление. В ходе следствия каждый из них сделал по два заявления. Браун: «Я не делал этого. Джонс не делал этого». Смит: «Я не делал этого. Это сделал Браун.» Джонс: «Браун не делал этого. Это сделал Смит.» Потом оказалось, что один из них дважды сказал правду, другой — дважды солгал, третий — раз сказал правду, раз солгал. Кто совершил преступление? Окружность S и точка O лежат в одной плоскости, причём O находится вне окружности. Построим произвольный шар, проходящий через окружность S, и опишем конус с вершиной в точке O и касающийся шара. Найти геометрическое место центров окружностей, по которым конусы касаются шаров. Докажите, что дроби 1000/2001 и 1001/2001 имеют равную длину периодов. Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету? Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник. Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями. Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 381]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 381] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|