ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть  A1, B1, C1 и D1 — середины сторон  CD, DA, AB, BC квадрата ABCD, площадь которого равна S. Найдите площадь четырехугольника, образованного прямыми  AA1, BB1, CC1 и DD1.

Вниз   Решение


В игре Тантрикс-солитер возможны фишки 14 типов:

Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»:

Саша потерял фишку . Докажите, что теперь он не сможет выложить оставшиеся 13 фишек так, чтобы в картинке не было «дырок», а все синие линии образовывали петлю.

ВверхВниз   Решение


а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.

ВверхВниз   Решение


Докажите, что при параллельном переносе окружность переходит в окружность.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1029]      



Задача 57807

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что при параллельном переносе окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57808

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.
Прислать комментарий     Решение


Задача 57809

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.
Прислать комментарий     Решение


Задача 57810

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.
Прислать комментарий     Решение


Задача 57833

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при центральной симметрии окружность переходит в окружность.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1029]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .