|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах. Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно. Найдите объём правильного октаэдра (правильного восьмигранника), ребро которого равно a . Уравнение xn + a1xn–1 + ... + an–1x + an = 0 с целыми ненулевыми коэффициентами имеет n различных целых корней. В треугольнике ABC высота AH проходит через середину медианы BM.
а) Впишите в клеточки четыре различные цифры, чтобы произведение дробей равнялось 20/21.
а) Докажите, что из медиан треугольника можно составить треугольник. б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4. |
Страница: 1 2 3 4 >> [Всего задач: 16]
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Страница: 1 2 3 4 >> [Всего задач: 16] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|