ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

Вниз   Решение


Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

ВверхВниз   Решение


Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше основание, тем меньше проведённая к нему высота.

ВверхВниз   Решение


Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?

ВверхВниз   Решение


Автор: Фольклор

Решите уравнение:   (x + 2010)(x + 2011)(x + 2012) = (x + 2011)(x + 2012)(x + 2013).

ВверхВниз   Решение


В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 375]      



Задача 57418

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.
Прислать комментарий     Решение


Задача 57419

Темы:   [ Неравенства с высотами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

Докажите, что  $ {\frac{1}{2r}}$ < $ {\frac{1}{h_a}}$ + $ {\frac{1}{h_b}}$ < $ {\frac{1}{r}}$.
Прислать комментарий     Решение


Задача 57420

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

Докажите, что  ha + hb + hc $ \geq$ 9r.
Прислать комментарий     Решение


Задача 57431

Тема:   [ Длины сторон (неравенства) ]
Сложность: 3
Классы: 8,9

Докажите, что  $ {\frac{9r}{2S}}$ $ \leq$ $ {\frac{1}{a}}$ + $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ $ \leq$ $ {\frac{9R}{4S}}$.
Прислать комментарий     Решение


Задача 57435

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 3
Классы: 8,9

Докажите, что  rrc $ \leq$ c2/4.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .