|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На продолжении стороны AC (за точку A) остроугольного треугольника ABC отмечена точка D, а на продолжении стороны BC (за точку C) отмечена точка E, причём AD = CE. Известно, что 2∠A = ∠C. Докажите, что ∠CDE < ½ (∠ABD + ∠A). Окружность разделена в отношении 7:11:6, и точки деления соединены между собой. Найдите углы полученного треугольника.
Докажите неравенство для натуральных n > 1: Имеется бесконечная арифметическая прогрессия натуральных чисел с ненулевой разностью. Из каждого её члена извлекли квадратный корень и, если получилось нецелое число, округлили до ближайшего целого. Может ли быть, что все округления были в одну сторону? Постройте ромб, две стороны которого лежат на двух данных параллельных прямых, а две другие проходят через две данные точки. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
С помощью циркуля и линейки проведите через данную точку прямую, пересекающую две стороны данного треугольника так, чтобы точки пересечения и концы третьей стороны находились на одной окружности.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|