Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 93]
Существуют ли на плоскости три такие точки
A,
B и
C, что для
любой точки
X длина хотя бы одного из
отрезков
XA,
XB и
XC иррациональна?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется
неудачной, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?
|
|
Сложность: 5 Классы: 10,11
|
Положительные иррациональные числа a и b таковы, что 1/a+1/b=1.
Докажите, что среди чисел [ma], [nb] каждое натуральное число
встречается ровно один раз.
|
|
Сложность: 5 Классы: 9,10,11
|
Две прямые на плоскости пересекаются под углом
. На одной из них сидит
блоха. Каждую секунду она прыгает с одной прямой на другую (точка пересечения
считается принадлежащей обеим прямым). Известно, что длина каждого её прыжка
равна 1 и что она никогда не возвращается на то место, где была секунду
назад. Через некоторое время блоха вернулась в первоначальную точку. Докажите,
что угол
измеряется рациональным числом градусов.
|
|
Сложность: 5+ Классы: 8,9,10
|
Для любых натуральных чисел a1, a2, ..., am, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел b1, b2, ..., bm сумма не равна нулю. Докажите это.