|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что CB = BE. Докажите, что если число n! + 1 делится на n + 1, то n + 1 – простое число. Докажите, что биссектрисы треугольника пересекаются в одной точке. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5304]
В окружность вписан равнобедренный треугольник с основанием
a и углом при основании
б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный.
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5304] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|