ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На каждой стороне правильного треугольника взято по точке. Стороны треугольника с вершинами в этих точках перпендикулярны сторонам исходного треугольника. В каком отношении каждая из взятых точек делит сторону исходного треугольника?

Вниз   Решение


Двое играют в такую игру. Один задумывает натуральное число n, а другой задаёт вопросы типа «верно ли, что n не меньше x» (число x он может выбирать по своему усмотрению) и получает ответы «да» или «нет». Каждой возможной стратегии T второго игрока сопоставим функцию fT(n), равную числу вопросов (до отгадывания), если было задумано число n. Пусть, например, стратегия T состоит в том, что сначала задают вопросы: «верно ли, что n не меньше 10?», «верно ли, что n не меньше 20?», ... до тех пор, пока на какой-то вопрос «верно ли, что n не меньше 10(k + 1)» не будет дан ответ «нет», а затем задают вопросы «верно ли, что n не меньше 10k + 1», «верно ли, что n не меньше 10k + 2» и так далее. Тогда fT(n) = a + 2 + (na)/10, где a последняя цифра числа n, то есть fT(n) растёт примерно как n/10.

а) Предложите стратегию, для которой функция fT растёт медленнее.

б) Сравнивая две стратегии, удобно для произвольной стратегии Т вместо функции fT ввести функцию fT, значение которой для любого натурального числа n равно наибольшему из чисел fT(k), где k пробегает значения от 1 до n. Оцените снизу fT для произвольной стратегии T.

ВверхВниз   Решение


Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру  a ≠ 0  (все цифры его не меньше a) и при этом получится  (xa)².

ВверхВниз   Решение


Отрезок B1C1, где точки B1 и C1 лежат на лучах AC и AB, называют антипараллельным стороне BC, если  $ \angle$AB1C1 = $ \angle$ABC и  $ \angle$AC1B1 = $ \angle$ACB. Докажите, что симедиана AS делит пополам любой отрезок B1C1, антипараллельный стороне BC.

ВверхВниз   Решение


Найдите геометрическое место точек, расположенных внутри данного угла, разность расстояний от которых до сторон этого угла имеет данную величину.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 57807

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что при параллельном переносе окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57808

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.
Прислать комментарий     Решение


Задача 57809

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.
Прислать комментарий     Решение


Задача 57810

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.
Прислать комментарий     Решение


Задача 55701

Темы:   [ Параллельный перенос (прочее) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек, расположенных внутри данного угла, разность расстояний от которых до сторон этого угла имеет данную величину.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .