ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Вниз   Решение


Задача "Троллейбусы"

Троллейбусы одного маршрута проходят через остановку
каждые k (1<=k<=500) минут. Известны времена прихода пассажиров
на эту остановку. Если пассажир приходит на остановку в
момент прихода троллейбуса, то он успевает уехать на нем.

Напишите программу, которая бы определяла, во сколько должен пройти
первый троллейбус (это время от 0 до k-1), чтобы:
1) Суммарное время ожидания троллейбуса для всех пассажиров было минимально.
2) Максимальное из времен ожидания троллейбуса было минимально.

Входные данные
Во входном файле INPUT.TXT записано сначала число k, затем - число N
(0<=N<=100000). Затем идет N чисел, задающих времена прихода пассажиров
на остановку. Каждое из этих чисел - целое от 0 до 100000.

Выходные данные
В выходной файл OUTPUT.TXT запишите два числа,
являющиеся ответами на первый и второй вопросы задачи соответственно.
Если решений несколько, выведите любое из них.

Пример файла INPUT.TXT	
100 5
0 210 99 551 99	

Пример файла OUTPUT.TXT
10
51

ВверхВниз   Решение


Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



Задача 57807

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что при параллельном переносе окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57808

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.
Прислать комментарий     Решение


Задача 57809

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.
Прислать комментарий     Решение


Задача 57810

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.
Прислать комментарий     Решение


Задача 55691

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .