ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC .

Вниз   Решение


Докажите, что:
а)  ma2 = (2b2 + 2c2 - a2)/4;
б)  ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4.

ВверхВниз   Решение


Докажите, что система неравенств
    |x| > |y – z + t|,
    |y| > |x – z + t|,
    |z| > |x – y + t|,
    |t| > |x – y + z|
не имеет решений.

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD  XY имеет наименьшую длину.

ВверхВниз   Решение


В треугольнике ABC биссектриса AD, высота BE и медиана CF пересекаются в точке O. Найдите ∠A, если  AF = $ \sqrt{3}$OF  и  ∠A > 60°.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64]      



Задача 54376

Темы:   [ Теорема косинусов ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC высота AD, медиана BE и биссектриса CF пересекаются в точке O. Найдите ∠C,  если OE = 2OC.

Прислать комментарий     Решение

Задача 54377

Темы:   [ Теорема косинусов ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC биссектриса AD, высота BE и медиана CF пересекаются в точке O. Найдите ∠A, если  AF = $ \sqrt{3}$OF  и  ∠A > 60°.

Прислать комментарий     Решение

Задача 105210

Темы:   [ Тангенсы и котангенсы углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Неравенства с углами ]
Сложность: 4-
Классы: 9,10,11

Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?
Прислать комментарий     Решение


Задача 111603

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4
Классы: 8,9

Укажите все выпуклые четырёхугольники, у которых суммы синусов противолежащих углов равны.
Прислать комментарий     Решение


Задача 57071

Темы:   [ Правильные многоугольники ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 9

Правильный (4k+2)-угольник вписан в окружность радиуса R с центром O.
Докажите, что сумма длин отрезков, высекаемых углом   AkOAk+1 на прямых   A1A2k, A2A2k–1, ..., AkAk+1,  равна R.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .