|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Илья всегда говорит правду, но когда ему задали дважды один и тот же вопрос, он дал на него разные ответы. Какой бы это мог быть вопрос? В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)
В выпуклом шестиугольнике ABCDEF все стороны равны, а также AD = BE = CF. Докажите, что в этот шестиугольник можно вписать окружность. Большее основание прямоугольной трапеции вдвое больше её меньшего основания, а боковые стороны равны 4 и 5. Найдите диагонали трапеции. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
Площадь равнобедренной трапеции равна 32. Котангенс угла между диагональю и основанием равен 2. Найдите высоту трапеции.
Основания равнобедренной трапеции равны 10 и 24, боковая сторона равна 25. Найдите высоту трапеции.
Большее основание прямоугольной трапеции вдвое больше её меньшего основания, а боковые стороны равны 4 и 5. Найдите диагонали трапеции.
Боковая сторона равнобедренной трапеции равна 41, высота равна 40 и средняя линия равна 45. Найдите основания.
Найдите высоту трапеции со сторонами 10, 10, 10 и 26.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|