ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что  A1C·BC = B1C·AC.

Вниз   Решение


Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку?

ВверхВниз   Решение


По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
  а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
  б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.

ВверхВниз   Решение


Через точку пересечения диагоналей трапеции проведена прямая, параллельная основаниям.
Найдите длину отрезка этой прямой, заключённого внутри трапеции, если основания трапеции равны a и b.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 122]      



Задача 108029

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

При каком отношении оснований трапеции существует прямая, на которой шесть точек пересечения с диагоналями, боковыми сторонами и продолжениями оснований трапеции высекают пять равных отрезков?

Прислать комментарий     Решение

Задача 111661

Темы:   [ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC расположены точки K и L, причём  AK : KB = 4 : 7  и  AL : LC = 3 : 2.  Прямая KL пересекает продолжение стороны BC в точке M. Найдите отношение  CM : BC.

Прислать комментарий     Решение

Задача 111662

Темы:   [ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Точки M и N расположены соответственно на сторонах BC и AB треугольника ABC, причём  CM : MB = 1 : 5  и  BN : AN = 1 : 3.  Прямая MN пересекает продолжение стороны AC в точке K. Найдите отношение  CK : AC.

Прислать комментарий     Решение

Задача 53748

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Через точку пересечения диагоналей трапеции проведена прямая, параллельная основаниям.
Найдите длину отрезка этой прямой, заключённого внутри трапеции, если основания трапеции равны a и b.

Прислать комментарий     Решение

Задача 53764

Темы:   [ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9

Точки K и M лежат на сторонах AB и BC треугольника ABC, причём  AK : BK = 3 : 2,  BM : MC = 3 : 1.  Через точку B проведена прямая l, параллельная AC. Прямая KM пересекает прямую l в точке P, а прямую AC в точке N. Найдите BP и CN, если  AC = a.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .