|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В разноцветной семейке было поровну белых, синих и полосатых детей-осьминожков. Когда несколько синих осьминожков стали полосатыми, папа решил посчитать детей. Синих и белых вместе взятых оказалось 10, зато белых и полосатых вместе взятых – 18. Сколько детей в разноцветной семейке? Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что AD = AB. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 275]
Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Через конец хорды, делящей окружность в отношении 3:5, проведена касательная. Найдите острый угол между хордой и касательной.
C — точка на продолжении диаметра AB, CD — касательная, угол ADC равен 110o. Найдите угловую величину дуги BD.
Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что AD = AB.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 275] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|