ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На хорде AC окружности ω выбрали точку B. На отрезках AB и BC как на диаметрах построили окружности ω1 и ω2 с центрами O1 и O2, которые пересекают ω второй раз в точках D и E соответственно. Лучи O1D и O2E пересекаются в точке F. Лучи AD и CE пересекаются в точке G.
Докажите, что прямая FG проходит через середину AC.

Вниз   Решение


Угол наклона всех боковых граней пирамиды SABC к основанию одинаков и равен arctg . Основанием пирамиды является прямоугольный треугольник ABC ( ACB = 90o ); SO – высота пирамиды. Найдите боковую поверхность пирамиды, если OB = , а радиус вписанной в треугольник ABC окружности равен 1.

ВверхВниз   Решение


Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.

ВверхВниз   Решение


На сколько нулей оканчивается число 100!?

ВверхВниз   Решение


Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырехугольников?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 77]      



Задача 35179

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность.
Прислать комментарий     Решение


Задача 35139

Темы:   [ Подсчет двумя способами ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 9,10,11

Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?

Прислать комментарий     Решение

Задача 35463

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3
Классы: 8,9

Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырехугольников?
Прислать комментарий     Решение


Задача 53380

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Ломаные ]
Сложность: 3
Классы: 7,8,9

Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

Прислать комментарий     Решение

Задача 55631

Темы:   [ Центральная симметрия ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .