ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны пять точек, из которых никакие три не лежат на одной прямой.
Докажите, что некоторые четыре из этих точек являются вершинами выпуклого четырёхугольника.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 58284

Тема:   [ Системы точек ]
Сложность: 3
Классы: 8,9

а) Архитектор хочет расположить четыре высотных здания так, что, гуляя по городу, можно увидеть их шпили в произвольном порядке (т. е. для любого набора номеров зданий i, j, k, l можно стоя в некоторой точке и поворачиваясь в направлении к пок или к противк часовой стрелки, увидеть сначала шпиль здания i, затем j, k, l). Удастся ли ему это сделать?
б) Тот же вопрос для пяти зданий.
Прислать комментарий     Решение


Задача 79279

Тема:   [ Системы точек ]
Сложность: 3
Классы: 8

На прямой расположено 100 точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Прислать комментарий     Решение


Задача 116391

Темы:   [ Системы точек ]
[ Геометрические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек  (A, B)  назовём необычной, если A – самая дальняя от B отмеченная точка, а B – ближайшая к A отмеченная точка (не считая самой точки A). Какое наибольшее возможное количество необычных пар могло получиться у Пети?

Прислать комментарий     Решение

Задача 35048

Темы:   [ Системы точек ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 8,9

На плоскости даны пять точек, из которых никакие три не лежат на одной прямой.
Докажите, что некоторые четыре из этих точек являются вершинами выпуклого четырёхугольника.

Прислать комментарий     Решение

Задача 35740

Темы:   [ Системы точек ]
[ Ортоцентр и ортотреугольник ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 9,10,11

Найдите все конечные множества точек на плоскости, обладающие таким свойством: никакие три точки множества не лежат на одной прямой и вместе с каждыми тремя точками данного множества ортоцентр треугольника, образованного этими точками, также принадлежит данному множеству.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .