|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны? Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC. Дан угол с вершиной O и окружность, касающаяся его сторон в точках A и B. Луч с началом в точке A, параллельный OB, пересекает окружность в точке C. Отрезок OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K. Докажите, что OK = KB. Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 368]
Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево.
Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах.
Докажите, что уравнение x/y + y/z + z/x = 1 неразрешимо в натуральных числах.
Попробуйте разменять 25-рублёвую купюру одиннадцатью купюрами достоинством 1, 3 и 5 рублей.
В комнате стоят трёхногие табуретки и четвероногие стулья. Когда на все
эти сидячие места уселись люди, в комнате оказалось 39 ног.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 368] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|