ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

  а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)
  б) Тот же вопрос про шесть кубов.

Вниз   Решение


Найдите расстояние от центра окружности радиуса 10 до хорды, равной 12.

ВверхВниз   Решение


Прямая, проходящая через точку M, удалённую от центра окружности радиуса 10 на расстояние, равное 26, касается окружности в точке A. Найдите AM.

ВверхВниз   Решение


Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 369]      



Задача 116978

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 5,6,7

Автор: Фольклор

Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?

Прислать комментарий     Решение

Задача 32787

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Задача 21978

Темы:   [ Принцип Дирихле (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 6,7,8

Несколько футбольных команд проводят турнир в один круг.
Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.

Прислать комментарий     Решение

Задача 21995

Темы:   [ Принцип Дирихле (прочее) ]
[ Теория графов (прочее) ]
Сложность: 3
Классы: 6,7,8

Докажите, что среди любых шести человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

Прислать комментарий     Решение

Задача 21997

Темы:   [ Принцип Дирихле (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 6,7,8

На складе имеется по 200 сапог 41, 42 и 43 размеров, причём среди этих 600 сапог 300 левых и 300 правых.
Докажите, что из них можно составить не менее 100 годных пар обуви.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 369]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .