|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Сколько существует натуральных чисел n, меньших 10000, для которых 2n – n² делится на 7? AA1 – медиана треугольника ABC. Точка C1 лежит на стороне AB, причём AC1 : C1B = 1 : 2. Отрезки AA1 и CC1 пересекаются в точке M. В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций: |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]
В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?
В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций:
Сколько последовательностей {a1, a2, ..., a2n}, состоящих из единиц и минус единиц, обладают тем свойством, что a1 + a2 + ... + a2n = 0, а все частичные суммы a1, a1 + a2, ..., a1 + a2 + ... + a2n неотрицательны?
Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?
Пусть A – угловая клетка шахматной доски, B – соседняя с ней по диагонали клетка. Докажите, что число способов обойти всю доску хромой ладьей (ходит на одну клетку по вертикали или горизонтали), начиная с клетки A, больше, чем число способов обойти всю доску хромой ладьей, начиная с клетки B. (Ладья должна побывать на каждой клетке ровно один раз.)
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|