ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)

Вниз   Решение


B основании четырёхугольной пирамиды SABCD лежит четырёхугольник ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.

ВверхВниз   Решение


Матч Бавария – Спартак окончился со счетом  5 : 8.  Докажите, что в матче был такой момент, когда Спартаку оставалось забить столько мячей, сколько Бавария уже забила к этому времени.

ВверхВниз   Решение


Какое наименьшее число карточек спортлото (6 из 49) надо купить, чтобы наверняка хоть в одной из них был угадан хоть один номер?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



Задача 61473

 [Лягушка-путешественница]
Темы:   [ Классическая комбинаторика (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 3-
Классы: 9,10,11

Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?

Прислать комментарий     Решение

Задача 32044

Темы:   [ Классическая комбинаторика (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

Какое наименьшее число карточек спортлото (6 из 49) надо купить, чтобы наверняка хоть в одной из них был угадан хоть один номер?

Прислать комментарий     Решение

Задача 60344

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

  а) Каких чисел больше среди целых чисел первой тысячи (включая и 1000): в записи которых есть единица, или остальных?

  б) Каких семизначных чисел больше: тех, в записи которых есть единица, или остальных?

Прислать комментарий     Решение

Задача 79545

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8

В тёмной комнате на полке в беспорядке лежат четыре пары носков двух разных размеров и двух разных цветов. Какое наименьшее число носков необходимо, не выходя из комнаты, переложить с полки в чемодан, чтобы в нем оказались две пары различного размера и цвета?

Прислать комментарий     Решение

Задача 35296

Темы:   [ Классическая комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

В сериале "Тайна Санта-Барбары" участвует 20 героев. Каждую серию происходит одно из событий: некоторый герой узнаёт Тайну, некоторый герой узнаёт, что кто-то знает Тайну, некоторый герой узнаёт, что кто-то не знает Тайну. Какое наибольшее число серий может продолжаться сериал?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .