|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости отмечено N = 3K точек. Будем рассматривать такие варианты построения K невырожденных треугольников с вершинами в этих точках, при которых каждая из заданных точек является вершиной какого-либо треугольника. Точки расположены так, что хотя бы одно построение с указанным свойством существует. Требуется определить тот вариант, при котором суммарная площадь полученных K треугольников минимальна. Входные данные Во входном файле содержатся (в указанном порядке) целое число N (1 ≤ N ≤ 30) и N пар вещественных чисел, задающих координаты точек. Числа разделяются пробелами и/или символами перевода строки. Выходные данные Первая строка выходного файла должна содержать минимально возможное значение суммарной площади. В каждую из следующих K строк запишите тройку номеров вершин, образующих очередной из треугольников. Номера вершин разделяются пробелом. Пример входного файла 6 0 0 1 0 10 0 0 2 12 0 10 1 Пример выходного файла 2 1 2 4 3 5 6 В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками. Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь. а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 123]
В некотором городе на каждом перекрёстке сходятся ровно три улицы. Улицы раскрашены в три цвета так, что на каждом перекрёстке сходятся улицы трёх разных цветов. Из города выходят три дороги. Докажите, что они имеют разные цвета.
В стране 2000 городов. Каждый город связан беспосадочными двусторонними авиалиниями с некоторыми другими городами, причём для каждого города число исходящих из него авиалиний есть степень двойки (то есть 1, 2, 4, 8, ...). Для каждого города A статистик подсчитал количество маршрутов, имеющих не более одной пересадки, связывающих A с другими городами, а затем просуммировал полученные результаты по всем 2000 городам. У него получилось 100000. Докажите, что статистик ошибся.
В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.
а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух.
На плоскости нарисовано несколько точек, некоторые пары точек соединены отрезками. Известно, что из каждой точки выходит не более k отрезков. Докажите, что точки можно покрасить в k + 1 цвет таким образом, чтобы каждые две точки, соединенные отрезком, были покрашены в разные цвета.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 123] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|