|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи При каких натуральных n > 1 найдутся такие различные натуральные числа a1, a2, ..., an, что сумма a1/a2 + a2/a3 + an/a1 – целое число? В некотором городе разрешаются только парные обмены квартир (если две семьи
обмениваются квартирами, то в тот же день они не имеют права участвовать в
другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня. а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 630]
Чётными или нечётными будут сумма и произведение:
Можно ли доску размером 5×5 заполнить доминошками размером 1×2?
а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
Доказать, что любая ось симметрии 45-угольника проходит через его вершину.
Чётно или нечётно число 1 + 2 + 3 + ... + 1990?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 630] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|