|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх? Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно? В 10-этажном доме на первом этаже живет 1 человек, на втором — 2, на третьем — 3, на четвертом — 4, ... на десятом — 10. На каком этаже лифт останавливается чаще всего? Докажите, что среди степеней двойки есть две, разность которых делится на 1987. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 369]
Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.
Докажите, что среди степеней двойки есть две, разность которых делится на 1987.
Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.
В клетках таблицы 3×3 расставлены числа –1, 0, 1.
Сто человек сидят за круглым столом, причём более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 369] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|