ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Имеется несколько гирь, общая масса которых равна 1 кг. Каждой гире присвоен свой номер: 1, 2, 3, .... Доказать, что найдётся такой номер n, что масса гири с номером n строго больше $ {\frac{1}{2^n}}$ кг.

Вниз   Решение


Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.

ВверхВниз   Решение


Медианы AA1 и BB1 треугольника ABC пересекаются в точке M. Докажите, что если четырехугольник A1MB1C описанный, то AC = BC.

ВверхВниз   Решение


Существует ли фигура, не имеющая осей симметрии, но переходящая в себя при некотором повороте?

ВверхВниз   Решение


Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .

ВверхВниз   Решение


Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов.

ВверхВниз   Решение


Дана линейка с параллельными краями и без делений. Постройте биссектрису угла, вершина которого недоступна (лежит вне чертежа).

ВверхВниз   Решение


Основания трапеции равны 10 и 24. Боковые стороны – 13 и 15. Найдите площадь трапеции.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



Задача 111487

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Углы при большем основании трапеции равны 30o и 60o , а меньшая боковая сторона равна 5. Найдите разность оснований.
Прислать комментарий     Решение


Задача 111488

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Наибольший угол прямоугольной трапеции равен 120o , а большая боковая сторона равна 12. Найдите разность оснований трапеции.
Прислать комментарий     Решение


Задача 111490

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Наибольший угол прямоугольной трапеции равен 135o , а меньшая боковая сторона равна 18. Найдите разность оснований трапеции.
Прислать комментарий     Решение


Задача 111491

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Углы при большем основании трапеции равны 30o и 60o , а большая боковая сторона равна 6 . Найдите вторую боковую сторону трапеции.
Прислать комментарий     Решение


Задача 111522

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Основания трапеции равны 10 и 24. Боковые стороны – 13 и 15. Найдите площадь трапеции.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .