ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

Вниз   Решение


Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

ВверхВниз   Решение


Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше основание, тем меньше проведённая к нему высота.

ВверхВниз   Решение


Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?

ВверхВниз   Решение


Автор: Фольклор

Решите уравнение:   (x + 2010)(x + 2011)(x + 2012) = (x + 2011)(x + 2012)(x + 2013).

ВверхВниз   Решение


В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.

ВверхВниз   Решение


В прямоугольной таблице NxM в начале игрок находится в левой верхней клетке.
За один ход ему разрешается перемещаться в соседнюю клетку
либо вправо, либо вниз (влево и вверх перемещаться запрещено).
Посчитайте, сколько есть способов у игрока попасть в правую
нижнюю клетку.

Входные данные
Во входном файле задано два числа N и M - размеры таблицы (1<=N<=10,
1<=M<=10).

Выходные данные
В выходной файл запишите искомое число способов.

Примечание
При указанных ограничениях, число способов входит в тип Longint.

Пример входного файла
2 3

Пример выходного файла
3

Пояснение
Если у нас есть таблица из 2 строк и 3 столбцов, то существуют следующие
способы попасть из левого верхнего угла в правый нижний:
1) вниз, вправо, вправо
2) вправо, вниз, вправо
3) вправо, вправо, вниз

Еще один пример входного файла
3 3

Пример выходного файла
6

ВверхВниз   Решение


Докажите, что площадь ортогональной проекции плоского многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью проекций и плоскостью проектируемого многоугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64]      



Задача 110432

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол наклона всех боковых граней пирамиды SABC к основанию одинаков и равен arctg . Основанием пирамиды является прямоугольный треугольник ABC ( ACB = 90o ); SO – высота пирамиды. Найдите боковую поверхность пирамиды, если OB = , а радиус вписанной в треугольник ABC окружности равен 1.
Прислать комментарий     Решение


Задача 110433

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является прямоугольный треугольник ABC ( C – вершина прямого угла), причём BC = 4 , OB = , а SO – высота пирамиды. Найдите боковую поверхность пирамиды SABC , если все её боковые грани одинаково наклонены к основанию и угол их наклона равен arcsin .
Прислать комментарий     Решение


Задача 110434

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Прямоугольный треугольник ABC является основанием пирамиды SABC , SO – высота пирамиды, C – вершина прямого угла треугольника ABC , OB = , COB = . Все боковые грани пирамиды одинаково наклонены к основанию пирамиды под углом, равным arctg . Найдите боковую поверхность пирамиды.
Прислать комментарий     Решение


Задача 110740

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Докажите, что площадь ортогональной проекции плоского многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью проекций и плоскостью проектируемого многоугольника.
Прислать комментарий     Решение


Задача 104101

Темы:   [ Площадь и ортогональная проекция ]
[ Куб ]
[ Свойства сечений ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 10,11

В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
Найдите площадь ортогональной проекции куба на эту плоскость.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .