ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Бился Иван-Царевич со Змеем Горынычем, трёхглавым и трёххвостым. Одним ударом он мог срубить либо одну голову, либо один хвост, либо две головы, либо два хвоста. Но, если срубить один хвост, то вырастут два; если срубить два хвоста – вырастет голова; если срубить голову, то вырастает новая голова, а если срубить две головы, то не вырастет ничего. Как должен действовать Иван-Царевич, чтобы срубить Змею все головы и все хвосты как можно быстрее?

Вниз   Решение


Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке  1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18,  то наименьшая из разностей между номерами соседних (по кругу) секторов равна  12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?

ВверхВниз   Решение


Можно ли расставить числа 1, 2, ..., 50 в вершинах и серединах сторон правильного 25-угольника так, чтобы сумма трёх чисел, стоящих в концах и середине каждой стороны, была для всех сторон одинаковой?

ВверхВниз   Решение


У Чебурашки есть набор из 36 камней массами 1 г, 2 г, ..., 36 г, а у Шапокляк есть суперклей, одной каплей которого можно склеить два камня в один (соответственно, можно склеить три камня двумя каплями и так далее). Шапокляк хочет склеить камни так, чтобы Чебурашка не смог из получившегося набора выбрать один или несколько камней общей массой 37 г. Какого наименьшего количества капель клея ей хватит, чтобы осуществить задуманное?

ВверхВниз   Решение


Даны два правильных тетраэдра с ребрами длины , переводящихся один в другой при центральной симметрии. Пусть ϕ – множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры ϕ .

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 35339

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия ]
[ Движение помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.
Прислать комментарий     Решение


Задача 109940

Темы:   [ Правильный тетраэдр ]
[ Центральная симметрия ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Объем многогранников ]
[ Вычисление объемов ]
Сложность: 7-
Классы: 10,11

Даны два правильных тетраэдра с ребрами длины , переводящихся один в другой при центральной симметрии. Пусть ϕ – множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры ϕ .
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .