|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M. Рассмотрим все натуральные числа, в десятичной записи которых отсутствует ноль. Докажите, что сумма обратных величин любого количества из этих чисел не превосходит некоторого числа C. Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида x² + px + q, среди коэффициентов p и q которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений? |
Страница: << 5 6 7 8 9 10 11 [Всего задач: 52]
Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида x² + px + q, среди коэффициентов p и q которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?
Многочлен P(x) с действительными коэффициентами таков, что уравнение P(m) + P(n) = 0 имеет бесконечно много решений в целых числах m и n.
Страница: << 5 6 7 8 9 10 11 [Всего задач: 52] |
|||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|