ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.

Вниз   Решение


Рассмотрим все натуральные числа, в десятичной записи которых отсутствует ноль. Докажите, что сумма обратных величин любого количества из этих чисел не превосходит некоторого числа C.

ВверхВниз   Решение


Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида  x² + px + q,  среди коэффициентов p и q которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 [Всего задач: 52]      



Задача 109630

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения. Теорема Виета ]
[ Свойства коэффициентов многочлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5+
Классы: 9,10,11

Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида  x² + px + q,  среди коэффициентов p и q которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?

Прислать комментарий     Решение

Задача 111694

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Графики и ГМТ на координатной плоскости ]
[ Центральная симметрия (прочее) ]
[ Монотонность и ограниченность ]
[ Свойства коэффициентов многочлена ]
Сложность: 5-
Классы: 10,11

Многочлен P(x) с действительными коэффициентами таков, что уравнение  P(m) + P(n) = 0  имеет бесконечно много решений в целых числах m и n.
Докажите, что у графика  y = P(x)  есть центр симметрии.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .