|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В ромб, одна из диагоналей которого равна 10 см, вписан круг радиуса 3 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 9 см2 ? (Ответ обосновать.)
Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.) Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры. Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)? Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии. |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 133]
Какому условию должны удовлетворять коэффициенты a, b, c уравнения x³ + ax² + bx + c, чтобы три его корня составляли арифметическую прогрессию?
Из таблицы
Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.
Функция f(x) такова, что для всех значений x выполняется равенство f(x + 1) = f(x) + 2x + 3. Известно, что f(0) = 1. Найдите f(2012).
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 133] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|