|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что следующие свойства тетраэдра равносильны: 1) все грани равновелики; 2) каждое ребро равно противоположному; 3) все грани равны; 4) центры описанной и вписанной сфер совпадают; 5) суммы углов при каждой вершине равны; 6) сумма плоских углов при каждой вершине равна 180o ; 7) развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии; 8) все грани – остроугольные треугольники с одинаковым радиусом описанной окружности; 9) ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник; 10) параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный; 11) высоты тетраэдра равны; 12) точка пересечения медиан совпадает с центром описанной сферы; 13) точка пересечения медиан совпадает с центром вписанной сферы; 14) сумма плоских углов при трёх вершинах равна 180o ; 15) сумма плоских углов при двух вершинах равна 180o и два противоположных ребра равны. Плоскость проходит через сторону основания правильной четырёхугольной пирамиды и делит пополам двугранный угол при этой стороне. Найдите площадь основания пирамиды наименьшего объёма, если известно, что указанная плоскость пересекает высоту пирамиды в точке, удалённой на расстояние d от плоскости основания. Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$. Треугольник ABC с острым углом ∠A = α вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины B, делит треугольник ABC на две части одинаковой площади. Найдите угол B. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
Плоская выпуклая фигура ограничена отрезками AB и AC и дугой BC некоторой окружности. Постройте какую-нибудь прямую, которая делит пополам её площадь.
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
Треугольник ABC с острым углом ∠A = α вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины B, делит треугольник ABC на две части одинаковой площади. Найдите угол B.
Страница: 1 2 3 4 5 6 >> [Всего задач: 29] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|