|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Можно ли в таблице 6×6 расставить числа 0, 1 и –1 так, чтобы все суммы чисел по вертикалям, горизонталям и двум главным диагоналям были различны? Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный. Незнайка хвастал своими выдающимися способностями умножать числа "в уме". Чтобы его проверить, Знайка предложил ему написать какое-нибудь число, перемножить его цифры и сказать результат. – "1210", – немедленно выпалил Незнайка. – "Ты неправ!" – сказал, подумав, Знайка. Как он обнаружил ошибку, не зная исходного числа? Вероятность рождения двойняшек в Швамбрании равна p, тройняшки в Швамбрании не рождаются. Из внешней точки проведены к окружности секущая, длина которой равна 12, и касательная, равная 2/3 внутреннего отрезка секущей. На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что AK = AP. Найдите объём правильной треугольной пирамиды со стороной основания a и высотой h . В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых. а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p. Докажите, что если для чисел a, b и c выполняются неравенства | a - b| |
Страница: 1 2 3 4 >> [Всего задач: 20]
| x| + | y| + | z|
где x, y, z — действительные числа.
На окружности записаны шесть чисел: каждое равно модулю разности двух чисел,
стоящих после него по часовой стрелке.
Страница: 1 2 3 4 >> [Всего задач: 20] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|