ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что число 11...11 (2n единиц) – составное.

Вниз   Решение


На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что  CP : CA = 2CM : CB.  Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.

ВверхВниз   Решение


Вычислите:  

ВверхВниз   Решение


Найдите расстояние между точкой  A(1, 7)  и точкой пересечения прямых  x – y – 1 = 0  и  x + 3y – 12 = 0.

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм по стороне и диагоналям.

ВверхВниз   Решение


Как одним циркулем удвоить отрезок?

ВверхВниз   Решение


Противоположные рёбра тетраэдра попарно равны. Основание тетраэдра – треугольник со сторонами a , b , c . Найдите объём тетраэдра.

ВверхВниз   Решение


Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1365]      



Задача 102965

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 5,6

У Джузеппе есть лист фанеры, размером 22×15. Джузеппе хочет из него вырезать как можно больше прямоугольных заготовок размером 3×5. Как это сделать?
Прислать комментарий     Решение


Задача 102971

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 4,5

У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?
Прислать комментарий     Решение


Задача 103778

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 6

Автор: Ботин Д.А.

Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.

Прислать комментарий     Решение


Задача 103815

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Таблицы и турниры (прочее) ]
Сложность: 2
Классы: 6

Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Прислать комментарий     Решение


Задача 103827

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 6

Разрежьте фигуру, изображённую на рисунке, на две части, из которых можно сложить треугольник.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1365]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .