|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки. В выпуклом четырехугольнике найдите точку, для которой сумма расстояний до вершин минимальна. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64]
Докажите, что в правильном тридцатиугольнике A1...A30 следующие тройки диагоналей:
В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении AN : BN = 2 : 1. Найдите тангенс угла DNC.
На плоскости дан угол величины 60°. Окружность касается одной стороны этого угла, пересекает другую сторону в точках A и B и пересекает биссектрису угла в точках C и D. AB = CD =
В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает продолжение стороны BC в точке M, причём MC : MB = 1 : 5. Перпендикуляр, проходящий через середину стороны BC, пересекает сторону AC в точке N, причём AN : NC = 1 : 2 . Найдите углы треугольника ABC.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|