ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она выбирает из неё половину карт, какие хочет, и отдает Василисе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди открывают по одной карте по своему выбору (соперник видит масть и достоинство открытой карты), начиная с Полины. Если в ответ на ход Полины Василиса смогла положить карту той же масти или того же достоинства, то Василиса зарабатывает одно очко. Какое наибольшее количество очков Василиса может гарантированно заработать?

Вниз   Решение


Сфера радиуса касается плоскостей всех боковых граней некоторой пирамиды в точках, лежащих на сторонах основания. Найдите высоту пирамиды, если её основанием служит треугольник со сторонами 5, 6 и 9.

ВверхВниз   Решение


Автор: Tran Quang Hung

Даны два одинаково ориентированных квадрата $A_1A_2A_3A_4$ и $B_1B_2B_3B_4$. Серединные перпендикуляры к отрезкам $A_1B_1$, $A_2B_2$, $A_3B_3$, $A_4B_4$ пересекают серединные перпендикуляры к отрезкам $A_2B_2$, $A_3B_3$, $A_4B_4$, $A_1B_1$ в точках $P$, $Q$, $R$, $S$ соответственно. Докажите, что $PR\perp QS$.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 290]      



Задача 35681

Темы:   [ Инварианты и полуинварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

Дана квадратная таблица 4×4, в каждой клетке которой стоит знак "+" или "–" :

За один ход можно поменять знаки на противоположные в любой строке или любом столбце.
Можно ли через несколько ходов получить таблицу из одних плюсов?

Прислать комментарий     Решение

Задача 88305

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа
  а) 1, 2, 3, ..., 2003;
  б) 1, 2, 3, ..., 2005.
Разрешается стереть два любых числа и вместо них написать их разность. Можно ли добиться того, чтобы все числа стали нулями?

Прислать комментарий     Решение

Задача 88311

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 7,8

Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?

Прислать комментарий     Решение

Задача 88312

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

В ряд выписаны числа 1, 2, 3, ..., 99, 100. Разрешается менять местами два числа, между которыми стоит ровно одно число.
Можно ли получить ряд 100, 99, 98, ..., 2, 1?

Прислать комментарий     Решение

Задача 98219

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9,10

10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:
  а) перевернуть четыре фишки, стоящие подряд;
  б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).
Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .