|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В ромбе ABCD угол BAD — острый. Окружность, вписанная в этот ромб, касается сторон AB и CD в точках M и N соответственно и пересекает отрезок CM в точке P, а отрезок BN — в точке Q. Найдите отношение BQ к QN, если CP : PM = 9 : 16.
|
Страница: 1 [Всего задач: 4]
а) площадь треугольника ABC1 больше площади треугольника ABC2; б) периметр треугольника ABC1 больше периметра треугольника ABC2.
б) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьший периметр имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольший периметр имеет правильный n-угольник.
Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|