ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Многоугольник имеет центр симметрии O. Докажите, что сумма расстояний до вершин минимальна для точки O.

Вниз   Решение


Многочлен P(x) с действительными коэффициентами таков, что уравнение  P(m) + P(n) = 0  имеет бесконечно много решений в целых числах m и n.
Докажите, что у графика  y = P(x)  есть центр симметрии.

ВверхВниз   Решение


Найти все действительные решения уравнения x2+2x sin xy+1=0 .

ВверхВниз   Решение


Решите систему:

$\displaystyle \left\{\vphantom{\begin{array}{c}x\sin\alpha+y\sin2\alpha+z\sin3\...
...a,\\
x\sin\gamma+y\sin2\gamma+z\sin3\gamma=\sin4\gamma.
\end{array}}\right.$$\displaystyle \begin{array}{c}x\sin\alpha+y\sin2\alpha+z\sin3\alpha=\sin4\alpha...
...sin4\beta,\\
x\sin\gamma+y\sin2\gamma+z\sin3\gamma=\sin4\gamma.
\end{array}$


Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 78200

Тема:   [ Центр масс ]
Сложность: 3
Классы: 11

Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят соответственно стороны AB и DC в отношении $ \alpha$, точки K3 и K4 делят соответственно стороны BC и AD в отношении $ \beta$. Доказать, что отрезки K1K2 и K3K4 пересекаются.
Прислать комментарий     Решение


Задача 87073

Темы:   [ Центр масс ]
[ Правильная пирамида ]
Сложность: 3
Классы: 8,9

Дана правильная треугольная пирамида PABC ( P – вершина) со стороной основания a и боковым ребром b ( b > a ). Сфера лежит над плоскостью основания ABC , касается этой плоскости в точке A и, кроме того, касается бокового ребра PB . Найдите радиус сферы.
Прислать комментарий     Решение


Задача 116832

Темы:   [ Центр масс ]
[ Хорды и секущие (прочее) ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.
Докажите, что центр масс этих точек не зависит от выбора таких двух прямых.

б) Внутри окружности находится правильный 2n-угольник  (n > 2),  его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.

Прислать комментарий     Решение

Задача 98228

Темы:   [ Центр масс ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников ABC и DEF, где A, B, C, D, E, F – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки.

Прислать комментарий     Решение

Задача 108003

Темы:   [ Центр масс ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .