ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Когда закончился хоккейный турнир (в один круг), оказалось, что для каждой группы команд можно найти команду (может быть, из той же группы), которая набрала в играх с командами этой группы нечётное число очков. Докажите, что в турнире участвовало чётное число команд. (Поражение – 0 очков, ничья – 1 очко, выигрыш – 2 очка.)

Вниз   Решение


Исследуйте системы уравнений:

а)

б)

в)

г)

д)

е)

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 104]      



Задача 86925

Темы:   [ Свойства сечений ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 3
Классы: 8,9

Основание пирамиды SABCD – параллелограмм ABCD . Какая фигура получилась в сечении этой пирамиды плоскостью ABM , где M – точка на ребре SC ?
Прислать комментарий     Решение


Задача 86935

Темы:   [ Свойства сечений ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Точка M – середина ребра AD тетраэдра ABCD . Точка N лежит на продолжении ребра AB за точку B , точка K – на продолжении ребра AC за точку C , причём BN = AB и CK = 2AC . Постройте сечение тетраэдра плоскостью MNK . В каком отношении эта плоскость делит рёбра DB и DC ?
Прислать комментарий     Решение


Задача 86936

Темы:   [ Свойства сечений ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Дан тетраэдр ABCD . Точки M , N и K лежат на ребрах AD , BC и DC соответственно, причём AM:MD = 1:3 , BN:NC = 1:1 и CK:KD = 1:2 . Постройте сечение тетраэдра плоскостью MNK . В каком отношении эта плоскость делит ребро AB ?
Прислать комментарий     Решение


Задача 86938

Темы:   [ Свойства сечений ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Дана четырёхугольная пирамида SABCD , основание которой – трапеция ABCD . Отношение оснований AD и BC этой трапеции равно 2. Постройте сечение пирамиды плоскостью, проходящей через точку D и середины ребер SA и SB . В каком отношении эта плоскость делит ребро SC ?
Прислать комментарий     Решение


Задача 86939

Темы:   [ Свойства сечений ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

На рёбрах AB , BC и AD тетраэдра ABCD взяты точки K , N и M соответственно, причём AK:KB = BN:NC = 2:1 , AM:MD = 3:1 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M и N . В каком отношении эта плоскость делит ребро CD ?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 104]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .