|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м? Точка M расположена на ребре CD тетраэдра ABCD , точка N – на продолжении ребра AC за точку A , а точка K – на продолжении ребра CB за точку B , причём DM:MC = 1:3 , AN:AC = 1:4 и BK:BC = 1:3 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M , N . В каком отношении эта плоскость делит объём тетраэдра? |
Страница: 1 2 3 >> [Всего задач: 13]
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Даны три приведённых квадратных трехчлена: P1(x), P2(x) и P3(x). Докажите, что уравнение |P1(x)| + |P2(x)| = |P3(x)| имеет не более восьми корней.
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?
Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x.
Страница: 1 2 3 >> [Всего задач: 13] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|