ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

Придя в школу, Коля и Алиса обнаружили на доске надпись: "ГОРОДСКАЯ УСТНАЯ ОЛИМПИАДА". Они договорились сыграть в следующую игру: за один ход в этой надписи разрешается стереть произвольное количество одинаковых букв, а выигрывает тот, кто стирает последнюю букву. Первым ходил Коля и стёр последнюю букву "А". Как надо играть Алисе, чтобы обеспечить себе выигрыш?

Вниз   Решение


На перпендикуляре к плоскости прямоугольника ABCD , проходящем через точку A , взята точка P , отличная от A . Докажите, что а) плоскость APB перпендикулярна плоскости APD ; б) плоскость APB перпендикулярна плоскости BPC ; в) плоскость APD перпендикулярна плоскости DPC .

ВверхВниз   Решение


Автор: Фольклор

Мальвина велела Буратино разрезать квадрат на 7 прямоугольников (необязательно различных), у каждого из которых одна сторона в два раза больше другой. Выполнимо ли это задание?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 35472

Темы:   [ Четырехугольники (экстремальные свойства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 2+
Классы: 8,9

В выпуклом четырехугольнике найдите точку, для которой сумма расстояний до вершин минимальна.
Прислать комментарий     Решение


Задача 57549

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 2+
Классы: 9

Внутри выпуклого четырехугольника найдите точку, сумма расстояний от которой до вершин была бы наименьшей.
Прислать комментарий     Решение


Задача 57550

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3
Классы: 9

Диагонали выпуклого четырехугольника ABCD пересекаются в точке O. Какую наименьшую площадь может иметь этот четырехугольник, если площадь треугольника AOB равна 4, а площадь треугольника COD равна 9?
Прислать комментарий     Решение


Задача 57551

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3
Классы: 9

Трапеция ABCD с основанием AD разрезана диагональю AC на два треугольника. Прямая l, параллельная основанию, разрезает эти треугольники на два треугольника и два четырехугольника. При каком положении прямой l сумма площадей полученных треугольников минимальна?
Прислать комментарий     Решение


Задача 57552

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3
Классы: 9

Площадь трапеции равна 1. Какую наименьшую величину может иметь наибольшая диагональ этой трапеции?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .