ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

Вниз   Решение


Углы треугольника ABC удовлетворяют соотношению  sin²A + sin²B + sin²C = 1.
Докажите, что его описанная окружность и окружность девяти точек пересекаются под прямым углом.

ВверхВниз   Решение


Автор: Иванов И.

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]      



Задача 54347

Тема:   [ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

На продолжении стороны AD прямоугольника ABCD за точку D взята точка E, причём  DE = 0,5 AD,  ∠BEC = 30°.
Найдите отношение сторон прямоугольника ABCD.

Прислать комментарий     Решение

Задача 54348

Тема:   [ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

Сторона AD прямоугольника ABCD равна 2. На продолжении стороны AD за точку A взята точка E, причём  EA = 1,  ∠BEC = 30°.  Найдите BE.

Прислать комментарий     Решение

Задача 104100

Темы:   [ Применение тригонометрических формул (геометрия) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 8,9,10

Укажите все выпуклые четырехугольники, у которых суммы синусов противолежащих углов равны.
Прислать комментарий     Решение


Задача 53854

Темы:   [ Трапеции (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3
Классы: 8,9

В трапеции ABCD углы A и D прямые,  AB = 1,  CD = 4,  AD = 5.  На стороне AD взята точка M так, что  ∠CMD = 2∠BMA.
В каком отношении точка M делит сторону AD?

Прислать комментарий     Решение

Задача 64634

Темы:   [ Многоугольники (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .